નીચેનો વેગ નિયમ ધરાવતી પ્રક્રિયાના વેગ અચળાંક $ k$ નો એકમ નક્કી કરો. વેગ $=-\frac{d[ R ]}{d t}=k[ A ]^{\frac{1}{2}}[ B ]^{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

આ પ્રક્રિયાનો કુલ ક્રમ $n=\frac{1}{2}+2=\frac{5}{2}=2.5$ वेग $k[ A ]^{\frac{1}{2}}[ B ]^{2}=[ R ]^{\frac{5}{2}}$

$\therefore k=\frac{\text {velocity }}{[ R ]^{\frac{5}{2}}}$

$\therefore k$ નો એકમ =વેગનો એકમ/સાંદ્રતાનો એકમ$^{\frac{5}{2}}$

$=\frac{( mol L ^{-1})^{1} s ^{-1}}{(molL^{-1})^{\frac{5}{2}}}$

$\left.=(\operatorname{mol~L})^{-1}\right)^{1-\frac{5}{2}} s ^{-1}$

$=(\operatorname{mol~L})^{-\frac{3}{2}} s ^{-1}$

$=( mol )^{\frac{-3}{2}}\left( L ^{-1}\right)^{\frac{-3}{2}} s ^{-1}$

જો પ્રક્રિયાક્રમ $=\frac{5}{2}$ તો તેના વેગ અચળાંક $k$ નો એકમ $L ^{\frac{+3}{2}} mol ^{\frac{-3}{2}} s ^{-1}$ થાય.

Similar Questions

આરંભમાં જયારે વાયુનું દબાણ $500 \,torr$ હોય ત્યારે વાયુમય સંયોજન $A$ નો વિધટન માટે અર્ધઆયુષ્ય $240\, s$ છે. જ્યારે દબાણ $250 \,torr$ હોય ત્યારે અર્ધ આયુષ્ય $4.0 \,min$ મળે છે. તો પ્રક્રિયાક્રમ $........$ છે. (નજીકના પૂર્ણાંકમાં)

  • [JEE MAIN 2022]

નીચેની પ્રક્રિયા $2A + B \rightarrow C + D - $ માટે લાગુ પડતાં નિયમ પસંદ કરો.

$1$.  $[A]$  $0.1$,  $[B]$  $0.1 - $ પ્રારંભિક દર $ \rightarrow 7.5 \times 10^{-3}$

$2$. $[A]$  $0.3$,  $[B]$  $0.2 -$  પ્રારંભિક દર $ \rightarrow 9.0 \times 10^{-2}$

$3$.  $[A]$  $0.3$,  $[B]$  $0.4 -$  પ્રારંભિક દર $ \rightarrow 3.6 \times 10^{-1}$

$4$.  $[A]$  $0.4$,  $[B]$  $0.1 -$  પ્રારંભિક દર $ \rightarrow  3.0 \times 10^{-2}$

રાસાયણિક પ્રક્રિયા $2A + 2B + C \rightarrow$ નિપજ માટે સમીકરણને અનુસરતા : $r \propto [A] [B]^2$ પ્રક્રિયાનો ક્રમ......

પ્રાથમિક અને જટિલ પ્રક્રિયાઓ વિશે જણાવો.

બિનતત્ત્વયોગમિતિય પ્રક્રિયા $2A + B \rightarrow C + D,$ માટે $298\, K.$ તાપમાને ત્રણ જુદા જુદા પ્રયોગો દ્વારા મળેલી ગતિકીય માહિતી નીચે મુજબ છે.

શરૂઆતની સાંદ્રતા

$(A)$

શરૂઆતની સાંદ્રતા

$(A)$

$C$ બનવાનો પ્રારંભિક વેગ

$(mol\,L^{-1}\,s^{-1})$

$0.1\,M$ $0.1\,M$ $1.2\times 10^{-3}$
$0.1\,M$ $0.2\,M$ $1.2\times 10^{-3}$
$0.2\,M$ $0.1\,M$ $2.4 \times 10^{-3}$

તો $C$ બનવાનો વેગનિયમ (rate law) શું થશે ?

  • [JEE MAIN 2014]